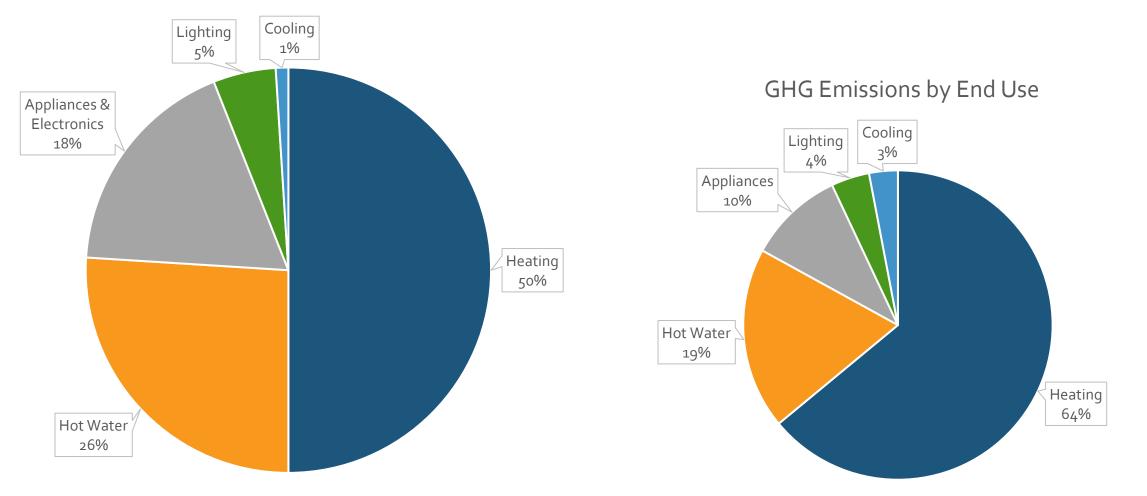


FIRST NATIONS HOME ENERGYSAVE

BUILDING ENVELOPE -NEW CONSTRUCTION

WHY ENVELOPES FAIL

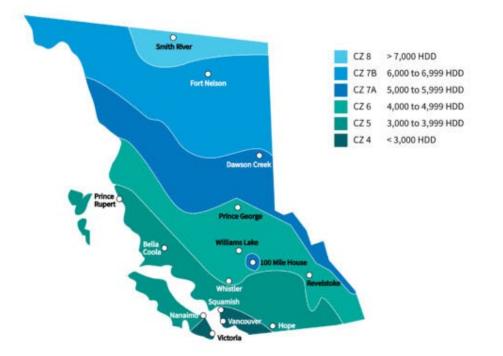
Design Deficiencies


Material Failure

Poor Workmanship

Acts of Nature

HOME ENERGY USE



CLIMATE ZONES

Climate Zones

The BC Building Code defines the energy performance targets of the Step Code based on the building's climate zone (CZ). The BC climate zones are defined by the average heating degree-days below 18° C (HDD). The BC Building Code states that the authority having jurisdiction (AHJ) can establish climatic values to define climate zones, typically based on information from Environment Canada, and building designers must consult the AHJ before making any assumptions about a building's climate zone. Note that in some locations, there may be several climate zones due to variations in elevation.

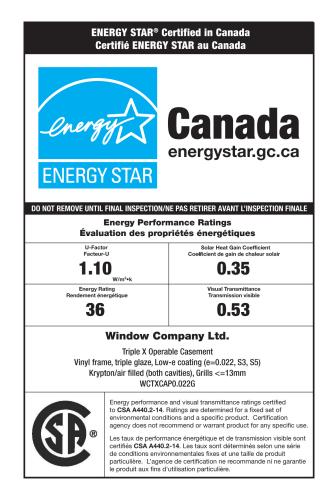
BC Climate Zone Per BCBC (* denotes locations with multiple climate zones)

Abbotsford	Duncan	Langley	Richmond	Surrey
Agassiz	Delta	Mission	Sechelt	Vancouver
Burnaby*	Maple Ridge	New Westminster	Sidney	Victoria
Chilliwack	Jordan River	North Vancouver*	Sooke	West Vancouver
Crofton	Langford	Port Renfrew	Squamish	White Rock

Alberni	Courtenay	Ladysmith	Osoyoos	Queen Charlotte City
Ashcroft	Crescent Valley	Lillooet	Parksville	Salmon Arm
Bamfield	Gold River	Lytton	Penticton	Sandspit
Bella Bella	Grand Forks	Masset	Port Alberni	Tahsis
Bella Coola	Hope	Merritt	Port Alice	Tofino
Burnaby (SFU)	Kamloops	Montrose	Port Hardy	Trail
Cache Creek	Kaslo	Nakusp	Port McNeill	Ucluelet
Campbell River	Kelowna	Nanaimo	Powell River	Vernon
Castlegar	Kitimat Plant	Nelson	Prince Rupert	Youbou
Comox	Kitimat Townsite	Ocean Falls	Oualicum Beach	

CZ 6 4,000 to 4,999 HDD					
Carmi	Fernie	McBride	Revelstoke	Williams Lake	
Cranbrook	Golden	Prince George	Stewart		
Dog Creek	Greenwood	Princeton	Terrace		
Elko	Kimberley	Quesnel	Whistler		

CZ 7A 5,000 to	5,999 HDD	CZ 7B 6,000 to 6,999 HDD	CZ 8	
100 Mile House Burns Lake Chetwynd Dawson Creek Fort St. John	Glacier Mackenzie McLeod Lake Smithers Taylor	Beatton River Dease Lake Fort Nelson	Smith River	

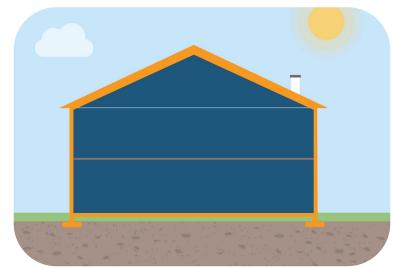

Source: CleanBC Better Homes, accessed Sept 6, 2020, webpage What is my climate zone?, <u>https://betterhomesbc.ca/faqs/what-is-my-climate-zone/</u>

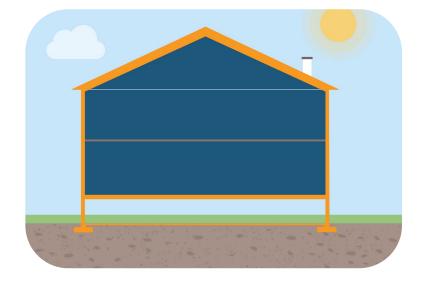
R-VALUE AND U-VALUE

R-Value Higher = Better

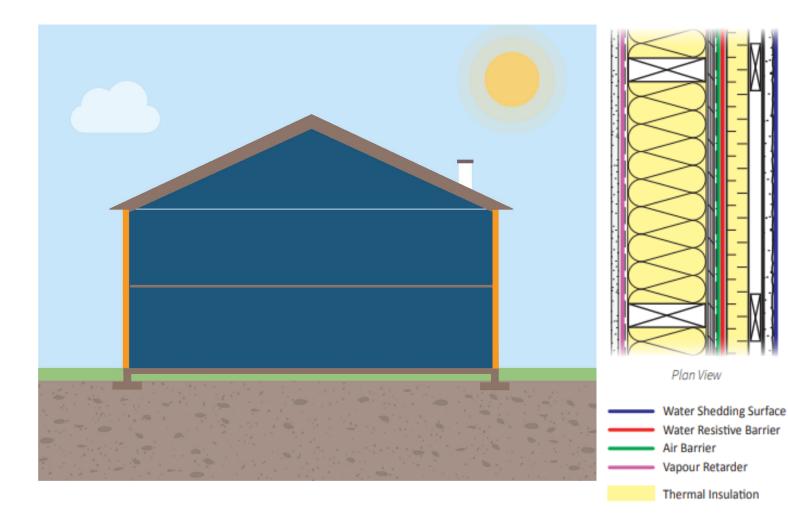
U-Value Lower = Better

COMPONENTS OF A BUILDING ENVELOPE




- Foundation
- Walls
- Roof
- Windows
 - Skylights
- Doors
- Penetrations
 - Venting, meters, etc.

FOUNDATION


Basement

Slab on Grade

WALLS

Main Purchasing Considerations:

- Cost
 - Initial cost
 - Cost effectiveness
- Constructability
- Air tightness
- Moisture Durability
- Sustainability

ROOF

Asphalt

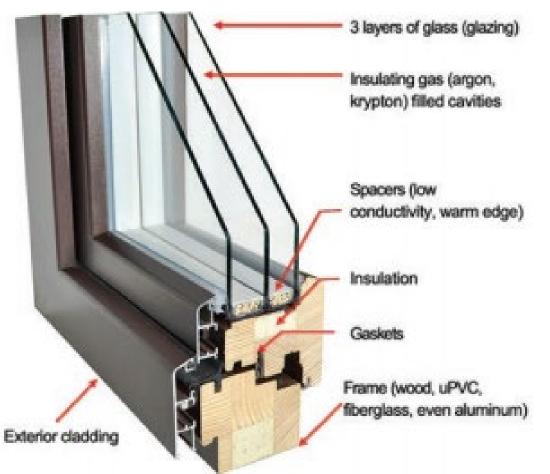
Metal

Wood

Considerations:

- Roof Material
- Roof Pitch
- Roof Overhangs
- Fenestrations, vents, etc.

WINDOWS


Considerations:

- Window Quality
- Quality of Installation

BIG IDEA | WINDOW QUALITY

Consider:

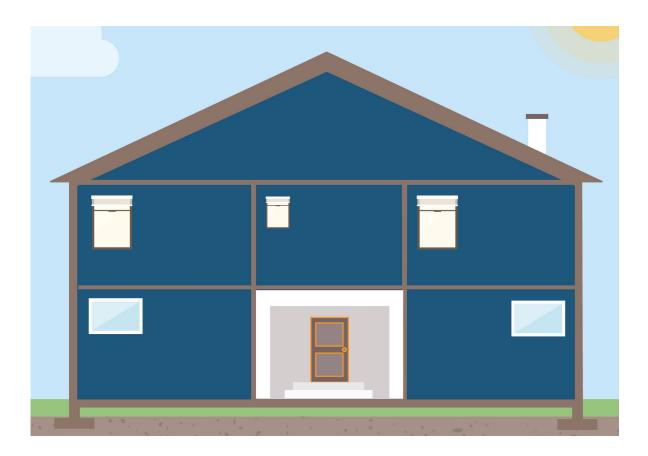
- Single, Double, Triple pane
 - Multiple low-e coatings
- Gas filling
 - Argon
 - Krypton
- Quality of frame/seal
 - Insulated framing
 - Non-conductive framing

7

BIG IDEA OUALITY OF INSTALLATION

Consider:

- Window positioning
- Size
- How flush it is installed
- How well it is sealed
- Check with blower door/ pressure test

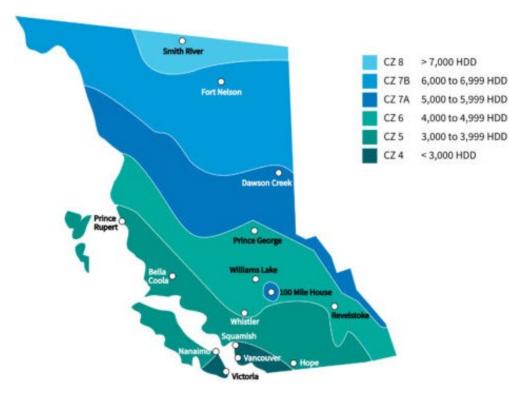

57

DOORS

Main Considerations:

- 1. Cost
- 2. Function
- 3. Aesthetics
- 4. Thermal Performance
- 5. Security

WALL PENETRATIONS



Potential Solutions:

- 1. Flashing
- 2. Rain Screens
- 3. Caulking
- 4. Sealing

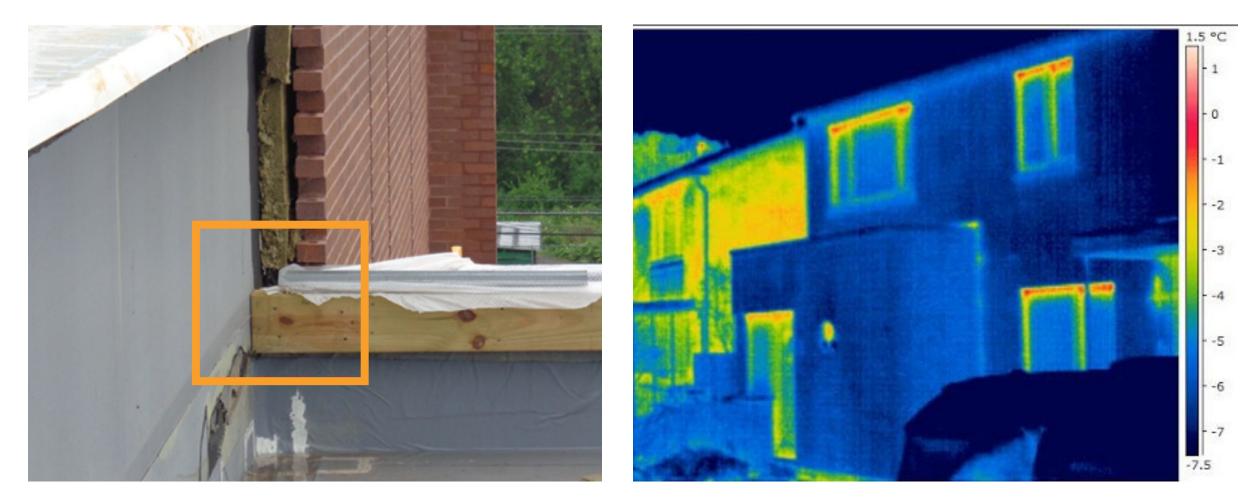
BIG IDEA | AIR TIGHTNESS

Recommended Airtightness Targets and Insulation Levels for Homes in BC

Wood-frame Building Enclosure Assembly	Zones 4 & 5 ≤3999 HDD	Zone 6 4000-4999 HDD	Zone 7A 5000-5999 HDD	Zone 7B & 8 ≥6000 HDD
Attic Spaces	R-40	R-50	R-60	R-60
Cathedral or Flat Roofs	R-30	R-30	R-35	R-40
Above-grade Walls	R-20	R-25	R-25	R-30
Below-grade Walls	R-20	R-20	R25	R-25
Suspended Floors	R-25	R-30	R-40	R-50
Slab-on-grade Floors	R-10	R-15	R-20	R-25
Airtightness (ACH50)	<5 ACH	<4 ACH	<3 ACH	<2 ACH

- R-Value & airtightness of home is determined by climate & geography
- Warmer, damper regions require less insulation, but more air changes

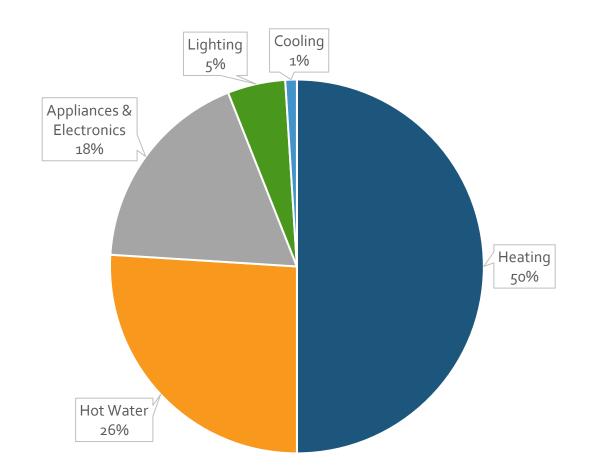
INFILTRATION & EXFILTRATION



- Infiltration- Is the movement of air into a building
- Exfiltration- Is the movement of air out of a building
- Ways to prevent:
 - Continuity of materials
 - Structural support
 - Air impermeability of materials
 - Durability of materials for air barrier system

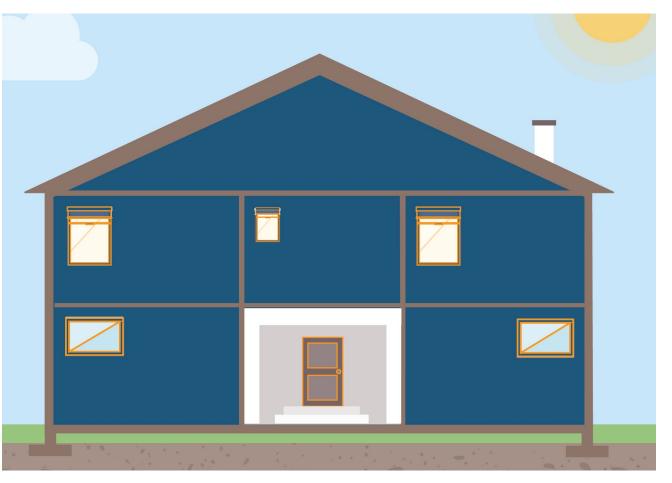
QUALITY CONTROL & INSPECTIONS

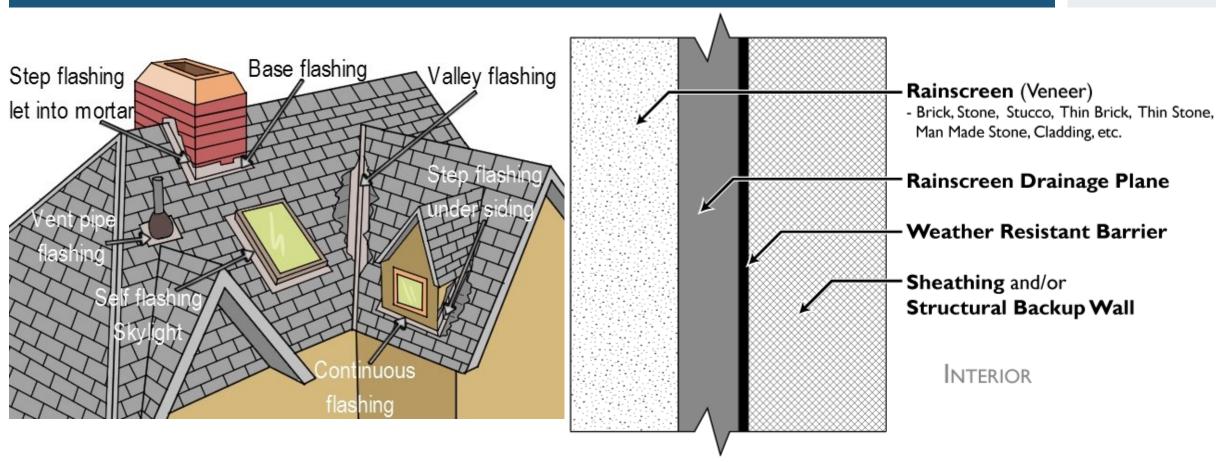



Ways to ensure built-out conforms with design:

- Design review by third party
- Thermal imaging and blower-door inspections
- Warranties and performance guarantees
- Reference checking contractors
- Mid-construction structural inspections

PRIORITIZING INVESTMENTS





WINDOWS AND DOORS

Investment/Design Considerations:

- South facing (when possible)
- Fewer, higher quality windows
- Triple or double pane
- Window caulking
- Door seals
- Blower door test

Source: Wonkee Donkee Tools

WALL PENETRATIONS

Source: Wikipedia: Rainscreen

~

WALL INSULATION

Do it right from the start and save **\$\$\$** and headaches later!

ROOF INSULATION

Investment/Design Considerations:

- Attic insulation should be R-40 minimum and higher in most regions
- Increasing R-value is minimal in long term & does not interfere with building function
- Adding insulation to ceiling is less challenging and destructive than walls, but still more cost effective to do when home is being built

PRE-BUILT OR ON-SITE CONSTRUCTION

- Pros of pre-built:
 - Faster
 - Higher quality control
 - Cost certainty
 - Easier project management and administration
- Cons:
 - Need for crane
 - Damage during transport
 - Harder to involve local labour/onsite training
 - Lack of familiarity among builders of Community needs
 - Homes are not built for family needs and are standardized
 - Hard to modify/change plans
 - Harder to use local materials

THE FINANCIAL CASE

- Rules of thumb:
 - Building energy efficient envelopes are financially sound-if done from the start
 - It's always cheaper to do it right the first time, then to do it poorly and fix it
 - Building envelope repairs are expensive!
 - If training/employment are priorities for your Community, negotiate with contractors to use local labour
 - Ask manufacturers, consultants, and builders to give energy efficient options, and normal options, to gauge the price difference
 - Consider local context in decisions

THE FINANCIAL CASE

Adam's House Option 1 Option 2 Option 3

\$2.00/sq.ft for closed cell foam with effective **R-50**

\$1.50/sq.ft for R-35 open cell foam with thermal bridging addressed

\$0.50/sq.ft for R-18 fiberglass with no added insulation to studs

\$0.50-\$2.00 per sq.ft for insulation, depending on R-value & material selection for a 1,000 sq. ft home

THE FINANCIAL CASE

Option #	R-Value	Insulation Type	Upfront Cost	Winter Heating Bill	Summer Heating Bill	Annual Heating Bill	Lifetime Heating Cost (25-Yr)
Option 1	R-18	Fiberglass	\$500	\$165	\$60	\$1,350	\$33,750
Option 2	R-35	Open cell cellulose	\$1,500	\$125	\$50	\$1,095	\$27,375
Option 3	R-50	Closed foam cellulose	\$2,000	\$85	\$40	\$765	\$19,125

This training series was developed by

For the Fraser Basin Council's First Nations Home EnergySave program,

With financial support from:

