CARBON MANAGEMENT

ATTAINING REGIONAL SOLUTIONS

NAOKO ELLIS, PROFESSOR, PHD, PENG

How do we achieve net zero CO_2 emissions?

- Researchers at Natural ٠ Resources Canada are creating tools that we can all use to solve the CCUS part of the puzzle
- Extensive external collaboration • with industry and universities
- CO₂ capture from fossil, process and biogenic sources •
- CO₂ storage prospectivity •
 - Geological reservoirs
 - Mineralization (e.g. tailings)
- CO₂ transportation ٠

Canada

CCUS hubs and clusters ٠

Major CO_2 emitters in Canada by emission rate; Fossil & process ECCC 2018, biogenic data NRCan 2018 from provincial sources

Natural Resources Ressources naturelles Canada

Emissions in British Columbia

- Many of British Columbia's large emitters are distant from proven CO₂ storage reservoirs
 - Bio-energy CCS opportunities, and hence negative emissions, are not co-located with CO₂ storage
 - Process emission intensive industries are not co-located with CO_2 stroage
- CO₂ transportation costs will be a relatively large fraction of total CCUS costs
 - For many emitters the rule of thumb that 90% of cost of CCS is CO₂ capture is not valid

Natural Resources Ressources naturelles Canada

Canada

CO₂ Storage Opportunities

- As CO₂ storage data becomes available it will become available in both our publicly available datasets and in the mapping tools, for example:
 - Reservoir identification
 - Data required for reservoir assessment
- Currently aggregating information and converting to a common data form
- National and regional analyses will provide '**combined chance of success**' type metrics giving clues as to where CO₂ storage projects are most likely to be successful
- Data can be easily filtered in order to identify opportunities with the 'right stuff'

Canada

Transportation Planning

- National scale
- Snap shot & time varying optimization algorithms
- Operational and strategic approaches
- Cost minimization considering:
 - Potential impact on First Nations lands
 - Protected areas
 - Existing rights-of-way
 - Socio-economic implications
 - Local construction cost factors (e.g. slope, population density, soil type)
 - OPEX expenses (e.g power, labour)
 - Integration with US potential CCUS networks
 - Robustness and redundancy
- Bottoms up engineering including pressure loss, pipe size and thickness, allowable stresses, re-compression stations

Canada

Canada

latural Resources Ressources naturelles Canada

A Tool to Support Industry

Regional industrial hubs and clusters

- Minimize costs by working together
- For example, replicate the Alberta Carbon Trunk Line many times over

Data identifying and characterizing CO₂ storage opportunities

- Onshore
- Offshore
- Mineralization from tailings

Transportation infrastructure

- Support multi-player buy and publicprivate partnerships
- Cost and feasibility
- Repurposing of existing

Policy & regulatory requirements

- Identify and link to existing policies and regulations
- Identify applicable codes and standards
- Cross-boundary

Cost characterization

- Nation-wide at industry level
- Facility based as updated information becomes available

*led by Robin Hughes, NRCan's CanmetENERGY Research Group

Milestones for 2021-22

- Potential hubs / clusters across Canada identified and characterized
- Data for CO₂ storage reservoirs aggregated
- CO₂ capture costs for facilities with high CO₂ emissions predicted:
- CO₂ transportation corridors characterized with optimization started
- Interactive graphics for sharing modeling results with the public to enhance overall knowledge of CCUS in our communities generated and shared
- Open-source code released to the public for use and improvement of the CCUS models

latural Resources Ressources naturelles canada Canada

OPPORTUNITIES

- 1. Leverage what is already being done
 - e.g. Lafarge concentrating 1t/d CO₂
 - Behaviour change in businesses resulting from carbon tax
- 2. Lateral integration
 - Industrial ecology, circular economy, etc.
 - Test out innovation
- 3. Regional leadership
 - Leverage regional relationships
 - Be seen nationally

OPPORTUNITIES

- 1. Leverage what is already being done
 - e.g. Lafarge concentrating 1t/d CO₂
 - · Behaviour change in businesses resulting from carbon tax
- 2. Lateral integration
 - Industrial ecology, circular economy, etc.
 - Test out innovation
- 3. Regional leadership
 - Leverage regional relationships
 - Be seen nationally

BIOENERGY WITH CARBON CAPTURE AND STORAGE (BECCS)

INTEGRATED RENEWABLE ENERGY HUB

OPPORTUNITIES

- 1. Leverage what is already being done
 - e.g. Lafarge concentrating 1t/d CO₂
 - Behaviour change in businesses resulting from carbon tax
- 2. Lateral integration
 - Industrial ecology, circular economy, etc.
 - Test out innovation
- 3. Regional leadership
 - Leverage regional relationships
 - Be seen nationally

IN SUMMARY

- Leveraging
 - Discover and communicate what is happening in the region
 - Funding opportunities
- Connecting
 - UBC
 - Campus as a living laboratory
 - Clean Energy Research Centre Carbon Cluster
 - Regional connection for building an industrial ecosystem
- Leading
 - Tremendous opportunity for this region to lead

Visioning Workshop: BC CCUS Systems March 22nd, 2022 8:30am-3:30pm

